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This paper considers the effect of continuous convection from small sources of 
buoyancy on the properties of the environment when the region of interest is 
bounded. The main assumptions are that the entrainment into the turbulent 
buoyant region is at  a rate proportional to the local mean upward velocity, and 
that the buoyant elements spread out at  the top of the region and become part 
of the non-turbulent environment at  that level. Asymptotic solutions, valid at  
large times, are obtained for the cases of plumes from point and line sources and 
also periodically released thermals. These all have the properties that the en- 
vironment is stably stratified, with the density profile fixed in shape, changing 
at  a uniform rate in time at all levels, and everywhere descending (with ascending 
buoyant elements). 

The analysis is carried out in detail for the point source in an environment of 
constant cross-section. Laboratory experiments have been conducted for this 
case, and these verify the major predictions of the theory. It is then shown how 
the method can be extended to include more realistic starting conditions for the 
convection, and a general shape of bounded environment. Finally, the model is 
applied quantitatively to a variety of problems in engineering, the atmosphere 
and the ocean, and the limitations on its use are discussed. 

1. Introduction 
Most work in the field of free convection has been developed from two rather 

different concepts of the motion produced by buoyancy forces. First, there are 
the studies of convection between parallel plates heated below and cooled above 
which have extended the work of BBnard on cellular convection to conditions of 
higher heat flux and turbulent flow. In  these, the emphasis has largely been on 
the mean motions and the statistical properties for the case of steady mean 
temperature, that is, heat flux constant with height. Until very recently little 
attention has been paid to the details of the processes through which these are 
achieved. On the other hand there are the theories and experiments which 
examine the properties of individual convection elements such as buoyant 
plumes. These phenomena have been studied for a variety of environmental 

t While on leave from the Department of Mechanical Engineering, University of 
Toronto. 
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conditions but usually with the assumption, stated or implied, that the density 
distribution in the environment can be specified in advance, and that it is un- 
changed during the period of interest, i.e. that the environment is effectively 
infinite compared to the scale of the plumes rising through it. 

In the present paper we shall discuss a simple model of the convective process 
which has something in common with both the above: namely, convection from 
sources placed in a finite closed region. This model can take into account several 
features which are arbitrarily and often unreasonably neglected in the earlier 
work, For example, although the atmosphere very near the ground can be treated 
as if the heat flux were nearIy steady and constant with height, this assumption 
is poor when the whole surface layer (up to cloud-base) is considered. This layer 
is heated up by a few degrees during a morning of strong convection, and most 
of this heating is due to the solar heating at  the ground which means that the heat 
flux is certainly not constant with height. It becomes obvious, too, when ex- 
perimenting with plumes in the laboratory that experimental tanks (and even 
the atmosphere) are far from infinite. Fluid which has been in the plume soon 
spreads out and modifies the environment, and can in turn alter the subsequent 
behaviour of the plume. A time-dependent solution which takes into account the 
interaction between the buoyant elements and the environment is clearly 
required. 

Another feature of convection in confined regions difficult to understand using 
the conventional models is that the environment away from boundaries is often 
slightly stable in the mean. This has been observed in the atmosphere by Warner 
& Telford (1967), and seems to be generally true in the so-called ‘upper mixed 
layer ’ of the ocean even under conditions when convective overturning would 
be expected. Another oceanographic example is the pool of hot salty water at  the 
bottom of the Red Sea (to which a more detailed reference will be made in 0 5.3); 
this seems to be heating from below, but at  the same time maintaining a slightly 
stable density gradient (Pugh 1969). 

In  the laboratory a reversal of the temperature gradient across the central 
region in horizontal parallel plate convection experiments has been observed, in 
agreement with the results of numerical calculations (for example, see Herring 
1964). A particularly clear demonstration of this phenomenon has been given 
recently by Gille (1967) using an optical method. Also of interest here are the 
experiments of Schwind & Vliet (1964) who studied the motions and the stratifica- 
tion produced in closed tanks by the heating of the vertical side walls. Their 
results, and the explanation they gave of them, have much in common with those 
to be described here, though they did not produce a detailed theory. 

In  all of these cases a stable environment is associated with the transfer of 
heat (or buoyancy) against the mean gradient. This is inexplicable if one thinks 
entirely in terms of the mean distributions and a steady state, but it emerges as 
a natural consequence of this time and space dependent model which accounts 
explicitly for the buoyant elements. 
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2. A physical description of the model 
Before the detailed theory is presented, it will be helpful to give a qualitative 

description of the model, based on the laboratory experiments used later to make 
the quantitative tests of the theory. In this way we can introduce the basic idea 
and demonstrate its plausibility in a practical case, and at the same time discuss 
the simplifying assumptions used in the analysis. 

2.1 The laboratory experiment 

The experiment consists simply of supplying concentrated salt solution at  a 
steady rate to a small nozzle projecting just below the surface of an aquarium 
tank of fresh water, and allowing the resulting turbulent plume to run for a very 
long time. The volume of added salt is negligible compared to the total volume of 
the tank, and the source velocity is small, so the source approximates to one of 
buoyancy alone. At various stages neutrally buoyant dye is added to mark 
a patch of fluid which had been in the plume at a particular time. The first heavy 
fluid to reach the bottom spreads out and produces a layer with a discontinuity 
or front above it, marked by dye in figure 1 (a) ,  plate 1. The turbulence in this 
layer quickly dies out, and as far as the continuing plume is concerned, it acts 
as part of the non-turbulent environment. Because the layer is heavier than the 
original fresh water, the plume which entrains it arrives at the bottom of the 
tank even heavier, and slides underneath. The first front is pushed upwards, and 
if more dye is injected this too will spread out in a layer and be lifted in its turn. 
Figure 1 ( b ) ,  plate 1, shows a later stage of the same experiment, during the fifth 
injection of dye. All the previously marked layers are clearly visible. 

It is not at all obvious that the tank should begin to fill with heavy fluid in this 
way, One can ask why a large scale vertical circulation is not set up instead, which 
mixes the salt solution from top to bottom. This question will be pursued later; 
it is sufficient to say now that a general overturning can occur if the inertia of 
the plume as it reaches the bottom is large compared with the buoyancy forces. 
This form of motion is favoured by regions which are deep compared to their 
width (or to the typical spacing of plumes) and is more likely to happen in the 
two-dimensional case. 

Returning now to the experiment, several important properties of our model 
can be deduced from the pictures shown in figure 1. The environmental density 
distribution built up in this way is certainly stable. After a long time the whole 
of the environment consists of fluid which has at  some time been in the dyed 
plume. This is being entrained again into the plume producing a general liftingt 
of the environment. Because of the stable density distribution this lifting pro- 
duces a continuous increase in density at  any level. The dye sheets in figure 1 (b) ,  
which were injected at equal time intervals, are much closer together near the 

t It should be noted, in order to avoid confusion later, that the theory will be presented 
and detailed comparison with experiments made assuming the direction of motion in the 
plumes is upwards. This is a more familiar convention and more useful for the major 
application to the atmosphere, but it nevertheless seems desirable to describe the experi- 
ments here as they were actually carried out. 
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top of the tank, but are moving more and more slowly. It will be shown later that 
they mark approximately equally spaced density surfaces, so this observation 
means that the density gradient is sharpened as the source is approached, due to 
the continuous removal of fluid between any two levels by entrainment into the 
plume. 

Considering the conservation of mass and buoyancy one deduces that the 
pattern outlined in figure 2 must have developed. Below the first front the density 
and salinity (or temperature) are constant a t  the initial value and at  this front 
there must be a step change. At all other places in the environment the density 
variation is smooth and continuous. 

FIGURE 2. Sketch of development of stratified environment due to a heat source, showing 
the motions in the plume and environment, and the corresponding temperature profiles 
at two times. The horizontal lines indicate the positions of the first front. 

This experiment gives some support to the basic assumption on which the 
present work is based: that the whole of the properties of the environment, as well 
as the plumes themselves, should be calculable once the geometry and the 
strengths of buoyancy sources are known. In  order to make progress theoretically, 
we have had to make more restrictive assumptions which are discussed below. 

2.2. T h e  idealized model 

Point or line sources of buoyancy will be assumed here for mathematical con- 
venience, though the same methods can be applied equally well to finite sources. 
The main development of the ideas will be carried out for the steady axisymmetric 
plume, the case which is most easily tested in the laboratory, but results will also 
be given more briefly for LL line plume and suddenly released axisymmetric 
‘thermals’. First of all we will treat a rectangular region, or more accurately one 
in which the cross-sectional area does not change with height, but later we will 
show how the method can easily be generalized to include other shapes of basin. 
It will be assumed that when the plume fluid reaches the top or (bottom) of the 
box, it spreads out instantaneously into a thin horizontal layer; the actual process 
of sideways flow will be ignored. The stable stratification will suppress any 
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turbulence and mixing in the environment, and it will also be assumed strong 
enough for the fluid entrained into the plume at  any level to come entirely from 
the environment at  that level, i.e. ‘draw down’ effects will be ignored. 

The most important physical assumption is that the inflow into the plume is 
proportional to the local mean velocity in the plume. This has been used to solve 
other problems of convection in stratified fluids, and it has been discussed in 
detail elsewhere (Morton, Taylor & Turner 1956). Finally, we shall restrict 
the discussion to two special features of the motion and not attempt the 
general time dependent problem. The motion of the first front can be solved 
exactly since it depends only on the properties of the plume in the uniform en- 
vironment ahead of the front. The behaviour in the rest of the region will be 
calculated only for the asymptotic state achieved after a long time when the 
whole of the fluid in the environment has been affected by passing through the 
plume. In this state it emerges that the density gradient has a distribution with 
height which remains fixed in time, while the density at  all levels is increasing 
linearly with time through the mechanism of vertical motion in the stable 
environment. The plume properties in this state are also constant in time. 

3. The circular plume 
3.1. The basic equations 

In  addition to the use of a point source of buoyancy alone, and the entrainment 
assumption relating the velocity of inflow to the mean velocity in the plume, we 
shall also require the usual assumptions that the density differences are every- 
where small except in the buoyancy terms, and that the profiles of mean vertical 
velocity and of mean buoyancy are similar at  all heights. It will be assumed that 
the profiles are of Gaussian form and of equal width 

and 

where the z-axis is positive upwards, r is a radial co-ordinate, p and po are the 
densities inside and outside the plume and p1 is some standard reference density 
for the system, which by assumption can never be very different from po anywhere. 
Thus w, the mean velocity on the axis, and b, the radius at  which this has fallen to 
l / e  of its central value, are used as the velocity and length scales for the plume. The 
whole treatment can equally well be carried out using scales defined by the inte- 
grals of volume and momentum fluxes across the plume, which is equivalent to 
the use of ‘top hot ’ profiles, and allowance can be made too for unequal spread 
of velocity and buoyancy (Morton 1959). Nothing is fundamentally changed by 
the choice made here, since the form of the equations stays the same and only 
numerical constants will be different. The whole analysis will be carried out for 
incompressible fluids, but as usual it can be applied to the compressible atmo- 
sphere by replacing density by potential density. 

The equations of conservation of volume, momentum and density deficiency 
in the plume integrated over the section for the Gaussian profiles, reduce to  the 
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following set derived by Morton et al. (1956), if it is assumed that the velocities in 
the plume are much Iarger than those in the environment, an approximation 
which will be justified below. 

I d 
-(b2w) = 2abw, 
dz 

Here a is the entrainment constant, chosen to make the rate of entrainment of 
volume at  any height equal to 2nbaw. The density gradient in the environment 
is taken into account in the last term, which is defined by 

aao/ax = (SlPl) (aPOla4, A0 = S(P,-P,)/P,. 

In  a closed region of depth H and cross-sectional area nR2 (see figure 2 )  two 
other relations will be satisfied. The downward volume flux in the environment 
at  any level must equal the upward flux in the plume, which gives 

-nR2U = d 2 w ,  (3) 

if it is assumed that R2 & b2, i.e. the area containing plumes is a small fraction 
of the total area at any level. The same assumption also ensures that the vertical 
velocity U in the environment can be neglected in the momentum equations for 
the plume. Secondly, we have 

aAo/at = - U(a$/az), (4) 

expressing the fact that density changes in the environment at  any level occur 
only because of the vertical motion, not because of any mixing or diffusion. 

3.2. Thefirst front 

When one is interested in the rate of advance of the front of buoyant fluid which 
first reaches the upper boundary and begins to descend, it is necessary to use only 
the equations for a uniform fluid. For it is clear from figure 2 that all the fluid 
added to the region above the front must have come originally by the entrain- 
ment into the plume in the uniform region below; recirculation of buoyant fluid 
will have no effect on the front. The properties of the plume below the front can 
be expressed in the usual way in terms of powers of z and the (constant) buoyancy 
flux Fo = $7rb2WAlz=0, 

The density step at the front at  all times is just that in the plume when it reaches 
the top, i.e. it is obtained by putting z = H in the above expression for A ; 
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The velocity of the front dz,/dt = U is obtained when (3 )  and (5 )  are applied at 
this level. 

Integration gives the relation between the position zo of the front and the time t 
in which this is attained (measuring from the time the plume first reached the top) 

This will be written in a non-dimensional form (consistent with the notation 
to be used later) 

in which (7) 

It is now possible to discuss approximately the conditions under which our 
model is relevant, or when a general overturning could take place instead of the 
filling process pictured here. We must relax the assumption of infinitely fast 
spreading of the fluid at  the top of the box and consider a mixed layer with thick- 
ness about b in which a density difference A builds up during the time the plume 
fluid moves to the side walls of the tank. The stabilizing buoyancy force per unit 
mass on this layer is B = nR2bA,. The inertial force due to the arrival of plume 
fluid at  the upper boundary is I = +nw2b2. If one supposes that this momentum 
flux could be deflected downwards a measure of the tendency towards over- 
turning is the ratio IlB which is given by (5) as 

Large values of this ratio imply instability and although this calculation is too 
crude for the constants to be significant, the main result is probably valid; 
overturning is not to be expected except in relatively tall regions. 

Some simple experiments in which the ratio HIR was varied showed that the 
form of the instability is present but not so simple as envisioned in the analysis. 
As the ratio was steadily increased the well-mixed layer near 5 = 1 increased in 
thickness and a pattern of overturning developed. This was observed as a flow 
from the outer part of the well-mixed bottom layer toward the plume with a 
definite upward component. For HIR = 1 this was not discernable but for 
HIR = 1.5 could be seen clearly. The zone from 1; = 0.5 to 1; = 1.0 was N e d  with 
a non-uniform ring vortex motion and the zone to 1; = 0 was a stratified quasi- 
static region as described in $2.  For HIR = 2.0 the motion in the overturning 
layer was noticably stronger and the quasi-static region extended only to 5 = 0.3. 
It was further reduced to [ = 0.2 for HIR = 2.5. From these observations it is 
concluded that H/R = 1 is the largest value for which this analysis is fully valid 
and that the limiting value of the parameter in (8) is about 0.1. 

3.3. Theory for the asymptotic state 

We will now consider the solution of the full set of equations (2), (3) and (4). 
A similarity solution can be found in which only A,, the environmental density, 
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A = (Sn)-#F%a-%H-*f(g), 

w = (27r)-Slrka-3H-&~(5), 

b = 2aHh(5),  

> (9) 

These last two equations can be combined to give a single equation for the non- 
dimensional buoyancy flux fj in the plume, whose integral 

fi = - ( 1 - C )  ( 1 1 )  

satisfies the proper boundary conditions at 5 = 0 and 5 = 1. The flux falls linearly 
from its value a t  the source to zero at  z = H ,  as it must if the environment is 
heating up uniformly. Using ( 1 1 )  with ( l o b )  gives a pair of equations to be 
solved together for j and k: 

(12) 1 djld5 = - k, 

k2(dk2/d5) = - j (  1 - 5). 
When j is obtained (10d)  can then be integrated to give fo as a separate step. 

The two remaining boundary conditions to be imposed on (12) are that j = 0 
and k = 0 a t  5 = 0. These imply that the solutions near the origin are of the same 
form as for a point source in uniform surroundings. Series solutions can be 
obtained which quickly converge over the whole range of integration 0 < 5 < 1. 
The first three terms of the solution for j and k are: 

(13)  1 - j  = gh2 = 0*459@- 0.0588@- O.OlOOg'2, 

k = gh = 0-765@ - 0.15758 - 0*0366[s. 

depends on time while b, w, U and A are functions of 5 but not of time. This 
solut'ion is approached asymptotically after an infinite time, but requires only 
small modification for practical situations. On a plot similar to figure 2 the 
density profiles would remain a constant shape but advance to the right at a 
uniform rate. 

Time can be eliminated from (4) if A,, is assumed to be linear in t .  This is also 
a reasonable assumption physically, since the result of steady heating for a long 
time shouId be a uniform increase in temperature through the whole of the 
environment. The physical variables can be expressed as non-dimensional func- 
tions of T and 5 defined in (7) by scaling with the given physical parameters of 
the problem, F, and H .  The following transformations have been chosen to bring 
the equations to their simplest non-dimensional form : 
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The coefficients of theleading terms of these series are just those needed to make 
the chosen forms (9) compatible with the solutions (5)  in uniform surroundings. 
All functions except fo can be calculated algebraically from (1 1) and (13), and 
integration of (10d) gives 

fo = c-:-P(3.27 - 0-837c- 0.062ca) - 2.37. (14) 

The constant of integration has been determined by arbitrarily setting fo = 0 at 
6 = 1. A constant might be determined by considering the establishment of this 
state, and another would result from the definition of p l ,  but these have been 
ignored. 

These solutions are shown in figure 3. Note that the sign of j is reversed for 
convenience of plotting. The infinity info at  c = 0 is the consequence of U --f 0 
as 6 -+ 0, i.e. fluid particles never reach the lower surface where the source is 
located; it is not present when more realistic boundary conditions are imposed, 
as will be shown later. 

An additional result which is most convenient for comparison with the experi- 
mental results is the time taken for a marked layer of fluid to travel from the 
boundary where the plume spreads out (5 = 1) to a general level c, the whole 
motion taking place after the asymptotic state has been achieved. In  dimensional 

form this is t = dz/U and so the relation in the non-dimensional functions is L 
choosing the constant to maker = 0 at 6 = 1 to this order of approximation. Thus 
the time history of a fluid layer in the environment gives a second measure of the 
asymptotic density distribution. 

3.4. Labaratory experiments with axisymmetric plumes 

The laboratory equipment used was so simple that little description is needed 
additional to that given in $ 2 .  The transparent tank used was rectangular, 
57.7 em x 42.7 ern cross-section and 45 em deep. Experiments were carried out 
with nozzles placed at  20 em, 30 em and 40 em above the bottom of the tank, with 
the initial level of fresh water about 0-5cm above this. After analysis of some 
exploratory runs, for which a nozzle of about 1 mm diameter was used, showed 
that (6) could not be satisfied, it was concluded that the momentum of the plume 
was too large. For all of the data shown herein a nozzle of 5mm diameter was 
used. This was as large as could be used giving uniform and steady flow but it is 
not certain that momentum effects are completely absent. To determine this 
a more extensive study would be required in which the Froude number of the 
finite source varied systematically. The salt solution used was 13-16 yo heavier 
than fresh water. A constant head tank and flowmeters were used to control and 
measure the rate of addition of salt water, and hence the buoyancy flux Fo. 

As the experiment was started 1 ml of fluorescent dye was added to the plume. 
This remained (as shown in figure 1) in a distinct layer which marked the first 
front of fluid affected by the plume. It was observed by lighting through a slit 
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across the top of the tank, and its position was recorded at8 a function of time by 
measuring against two vertical scales, one right in the centre of the tank under- 
neath the illuminated slit, and the other behind to minimize parallex errors. 
The origin of time t = 0 was arbitrarily taken as the instant the marked fluid 
reached the side of the tank. In  the early stages it was difficult to measure heights 
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FIGURE 3. Asymptotic solutions for circular plume. (a) Plume velocity g ,  radius h, and 
density defect f defined by (9). ( b )  Environment velocity j ,  density gradient df,,/dc and 
density defect fo defined by (9). 
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more accurately than to k 0.5 cm, because of waves on the interface, but as the 
interface rose, its position could be defined to f 0.1 cm. At later times, when the 
first front approached the source, the interface became so sharp that optical 
distortion made an accurate determination more difficult. 

When the first front had risen so close to the source that it appeared reasonable 
to assume that the asymptotic state had been reached in most of the environment, 
a second patch of dye was added, and followed as before. After this, too, had 
risen through most of the depth of the tank, the supply of salt was turned off. 

0.8 

0.7 

0 0  

- 0 - 
0 0  

0 

o Equation (6),  -I - 

0 3  

0 2  

1 I I I I 
10 20 30 40 

Time (min) 

FIGURE 4. Measured progress of first front. Method used to establish virtual origin 
is demonstrated. 0 ,  z = 0 at end of nozzle; x , virtual source 0.8 cm behind nozzle. 

Small samples of fluid were withdrawn from six to eight levels in the tank, and 
weighed to determine the density distribution. The two time sequences and the 
density distribution, for experiments carried out with two flow-rates and three 
depths, constitute the raw data which we wish now to compare with the theo- 
retical predictions. 

The &st front data have been plotted in a form suggested by (6), 20% against t .  
If the distance from the real nozzle is used it does not, in general, produce a 
straight line; but the addition of a constant length does make it possible to obtain 
an accurately linear plot, as shown in figure 4. This then is a sensitive method for 
finding the position of the virtual source; and the intercept and slope of this line 
also allow one to make estimates of two other parameters which enter into the 
theory. The ‘effective depth’ of the box H is more plausibly defined as z for 
t = 0 rather than by using the actual depth, because of the finite thickness of the 
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layer which spreads out along the boundary. The value of a which emerges from 
the measurements on all the ‘first fronts’ is a = 0.10 (appropriate for Gaussian 
profiles). This is even larger than the value of 0.093 suggested by the small scale 
experiments of Morton et al. (1956) in stratified surroundings, which is itself 
larger than the value of 0.083 obtained from profile measurements by Rouse, 
Yih & Humphreys (1952) in air. In  principle the accurate measurement of the 
first front behaviour gives a sensitive direct method of determining a (which has 
yet to be done for axisymmetric plumes), and this would be well worth doing on 
a larger scale for its own sake. 

For the present purposes the value of a = 0.10 found experimentally will be 
used throughout the data reduction. All the first front results are plotted non- 
dimensionally in figure 5, with Q against the functional form suggested by (7) ,  
but without the numerical constant (which includes a). This constant is taken 
into account only in the placement of the line, which is the theoretical prediction 
( 6 ) .  The symbols on figure 5 denote particular values of flux and depth of tank. 
These are listed in table 1. 

Symbols 
used on 

figures 5-7 

v 
A 
(3 
0 

0 
0 

Depth 
(em) 
20 
20 
30 
30 
40 
40 
40 

H 
(em) 
17.5 
19 
27.5 
27.5 
32.5 
36 
36 

Fo 
(om4/sec6) 

66 
117 
141 
77 

128 
81.3 
81.3 

71 7 2  

62.4 124-8 
51.8 103.6 
58.4 131.3 
56.4 142.4 
74.8 153-5 
57.7 133.5 

433 - 

TABLE 1. Summary of experimental conditions 

Plotting the results for the motion of the second layer of dye in the same 
dimensionless form gives the agreement with ( 6 a )  as shown in figure 6. The time 
of marking this layer after the start of the experiment is listed as T~ on table 1. 
The values of a and H determined from the first front have been used but the 
origin of time defined when z = H.  This has forced these points and those on 
figure 5 to be coincident for small t but the procedure was necessary, since the 
direct determination of when the coloured fluid reached the edge of the tank 
could not be done accurately because of the disturbances due to internal waves 
and turbulence. 

It is evident that the plots on figures 5 and 6 are quite similar and it is found 
that the time for given con figure 6 is very nearly 1.1 1 that on figure 5. That is, the 
first front travels about 11 % faster than the ones marked at large times. This 
small difference in velocity explains in part why the asymptotic state is reached 
so quickly; as soon as the first front has passed, the density gradient at  any level 
is very close to that in the asymptotic state. 

Finally, the directly measured density distributions in the environment, 
scaled according to (9), have been plotted together in figure 7 where they are 
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compared with the theoretical prediction (14). The point corresponding to the 
density on the boundary 6 = 1 has been kept fixed, but otherwise there is no 
arbitrariness in either the curve for the theory or the experimental points. The 
time r2 in table 1 is the time the distribution was measured after the start of the 
experiment. The results are close to the theoretical curve for the shallower depths 
but not for the deepest case. No observations during the experiment would 

0 8  

0.7 

0 6  

t 
0 5  

04 

0.3 

0.2 

0.1 

0 10 20 30 40 50 60 70 80 90 

r/4r-*a* 

FIGVRE 5. Dimensionless position of first front. Points are identified 
in table 1, line is (6a) with a. = 0.100. 

suggest the reason for this deviation. It is in the direction to be expected if the 
duration were too short, but another run was made for a time four times as great 
and as can be noted on figure 7 the results were virtually identical. Perhaps the 
deviation is due to mixing by turbulence in the layer spreading along the bottom 
of the tank which was probably relatively large, this case being closest to the 
instability limit. 



64 W .  D. Baines and J .  8. Turner 

4. Other types of sources 
Buoyancy sources of other geometries are as easy to treat theoretically. 

Results for two of them will be briefly derived here. An extensive experimental 
verification of these results has not been attempted though a preliminary test 
of one case will be reported. 

1 I 1 I t I I 1 I 

~/4n-*a* 

FIGURE 6. Dimensionless position of subsequent front. Line is (15) with a = 0.100. 

4.1. The line plume 

Gaussian profles have again been adopted and similar assumptions made; the 
only change is that the plume and environment behaviour must depend now on 
the buoyancy flux Fo = . J ( n / S )  bwhl,, per unit length as well as the depth H and 
width 2R of the two-dimensional box. We shall proceed straight to the non- 
dimensional equations to which the three plume equations and the two de- 
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with the subsidiary algebraic relationj = -gh (which follows from the equation 
of continuity in the environment). As before, ( 1 7 4  and ( 1 7 4  combine to give 

fi = - (1-5) ,  (18) 

satisfying the boundary conditions on f a t  the top and bottom. Substituting 
in ( 17 b)  leads to a pair of equations in j and jg = - g2h = x, say 

Series solutions which satisfy the boundary conditions and from which all the 
properties of interest can be obtained, are 

(20) I j = -5+&52+&53+..., 

x = j g  = - [+ $gz + &jc3 + -. - 9  

fo = 0.1422 -log c-+g-g'&j[2. ... 
The last relation was obtained by a further integration, the constant being 
evaluated by setting A, = 0 at x = H .  The non-dimensional solutions are plotted 
in figure 8. Near the source, these again approach the conditions in uniform 
surroundings. The time taken for a layer of marked fluid to move from the top 
5 = 1 t o  the level [ is readily shown to be the same as (15). 

by combining (17d) with the definition j = dtJclr. The descent of the first front 
can again be discussed entirely in terms of the motion of the plume in the uniform 
environment ahead of the front. The calculation is simpler here, since the two- 
dimensional plume has a constant velocity; the non-dimensional result is 

T = (21) 

In  this case too it is useful to consider the stability of the flow, or when a general 
overturning is to be expected. The buoyancy force per unit mass and width on 
a layer which spreads out with depth b is B = 2RbA, and the inertial force is 
I = J(77/2) w2b; arguing as before the ratio 

IIB = 0*5H/R (22) 

should give a measure of the tendency to overturn. The constant is uncertain, 
but (22) suggests that the critical condition now depends purely on the geometry 
of the region, not on the flux or other properties (or even on a). An attempt was 
made to confirm this relationship in a rectangular box 60 cm wide and 20 cm deep 
which had a 2.5 ern wide electrically heated line source in the centre of the base. 
The box was filled with air and the flow pattern observed for various heights. 
With the ratio of the depth to the half-width set at two, one single rotating cell 
was observed which filled the box. For the ratio of 1.3 there were two cells giving 
a pattern symmetrical about the centre line. The vorticity in the environment 
was evident and the largest velocities were seen down the walls and along the 
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floor. When the ratio was reduced to one or less this vorticity could not be noted 
and the environment appeared to have the motion assumedin this analysis.,Thus it 
is concluded that critical value of HIR is about one. The exact value could not be 
determined from these experiments since the location of neither the virtual 
source nor the virtual top of the box could be readily determined. The critical 
value of the parameter in (22) is therefore about 0.5. 

4.2. The suddenly released point source or 'thermal' 

If buoyancy is released in the form of a succession of identical thermals (assumed 
here for convenience to be spherical), each having buoyancy Po = 4nb3A/31,,, 
the analysis is especially simple. In this case it can be shown using the entrainment 
assumption and the continuity equation (Morton et al. 1956) that b = az = aHc  
whatever the conditions of stratification, where a is an entrainment constant 
relating the inflow velocity to the mean upward velocity. With the assumption 
of a spherical region of buoyant fluid (which can be modified if necessary) and 
similarity of profiles of velocity and buoyancy at  all heights, Turner (1963) has 
shown that the equations of momentum and continuity of density deficiency can 
be written in the form: 

d d dA 
- ( b 3 ~ )  = 3 3 A ,  - (b3A) = b 3 w 0  
at dt dz ' 

in which w and A specify the mean values in the spherical region. 
In  the environment, which is again of depth H and cross-sectional area nR2, 

the equation of conservation of A. is exactly the same as for the plumes, (4), but 
with the descent velocity U taken as a short term time average. That is, the 
thermals are released at a rate of n per unit time and the environment conditions 
are averaged over the time interval l/n. Thus the other environment equation 
which expresses the equality of volume flux for the upward and downward 
motions is 

which gives the environment velocity U directly : 

U = - $na3(H3/RZ) $. 

n+nb3 = -nR2U, 

After combining with (4) and the averaged rate of increase of buoyancy 

aA0/at = - nFo/nR2H, 

(24) defines the environment buoyancy gradient 

This can be integrated directly giving 

A - - 3 -(c-2- Fo 
I-T), 

O - 8n3 H 3  

where T = (3tI8a3n) (R/H)Z is the dimensionless time variable. Inserting these 
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expressions into the second of (23) produces an equation which is directly 
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integrated to give 

where the boundary condition A = 0, z = H has been used. The first of (23) can in 
turn be integrated directly for the thermal velocity 

Those solutions describing the properties of the thermals and environment 
are plotted in figure 9. In  each case the form resembles the equivalent property 
of the plume. 

An attempt was made to verify (28) in a simple experiment similar to those 
described for circular plumes. The same reservoir was used and thermals pro- 
duced by droplets of salt water falling from the end of a 5 mm tube, 7 mm above 
the water surface. Most, but not all, of the droplets produced turbulent ring 
vortices upon impingement. After 7 h of operation the density distribution was 
measured and found to be in qualitative agreement with (28). The shape of the 
profile departed appreciably from the theoretical prediction, being less steep 
than indicated by (28) near 5 = 1. The reason for this lack of agreement in detail 
was probably that too large a proportion of the thermals differed from the most 
common form, the ring vortex. Nevertheless, the agreement was sufficiently 
good to give confidence in the analysis. 

5. Extensions of the method 
We shall now show how the solutions obtained above can be modified to take 

into account other more realistic boundary conditions. The removal of the 
infinities introduced by the assumption of virtual point sources, the behaviour 
of pairs of sources, and the effect of an environment which has a changing cross- 
section with height will all be considered briefly here and illustrated by specific 
examples. The notation used will be the same as before. 

5.1. A well-mixed layer at the bottom of the environment 

Although the increasingly sharp gradients in the environment near the source 
are observed in the laboratory experiments, this is a feature which one would 
not expect to find in the atmosphere, for example. Instead, there will be a region 
near the ground which is well mixed or even unstably stratified, because of 
mechanical or convective mixing generated over the whole boundary. Let us 
suppose that a fraction S of the heat flux goes into heating this lower layer, in the 
form of smaller elements whose behaviour we shall not consider in detail, while 
the remaining part continues upwards in the form of plumes to heat the upper 
part of the environment. 

When a steady state is attained, it is clear from previous arguments that there 
will be a well-mixed layer of depth SH, on top of which is a layer (1 - 6) H with 
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a stable distribution of density formed by the plumes. The whole profile stays 
constant in shape while the temperature increases steadily in time. The density 
(but not the density gradient) must be continuous at SH. Although there will be 
a downward velocity and mixing into the bottom layer across this level, no net 
heat flux is associated with this process. 

We shall take as our example the line plume, this being a structure commonly 
observed in the atmosphere under conditions of light wind (Priestley 1959). The 
corresponding modifications for other cases will be obvious. The reduction of the 
equations to non-dimensional form must be based as before on the total Fo per 
unit length and H ,  in order to make comparisons with previous results, and the 
differences must lie in the boundary conditions and the way in which they are 
applied. It is again supposed that the whole environment is non-turbulent 
(a more questionable assumption now in the well-mixed layer), and that the 
plumes reaching the top of the environment arise from line buoyancy sources at  
the bottom boundary. At the height SH where our previous model becomes 
relevant, these will have the more realistic finite properties characteristic of a 
source of strength (1 - 8) Po per unit length, which has risen a distance 622 in 
a uniform environment. The same equations (17) and (19) will therefore hold 
above this height but with boundary conditions 

f =  S-1(1 -a)%, j = S(l-S)f, It: = S(1-6)%, [ =  6. (30) 

A simple power series solution cannot be obtained in this case, because we are 
not starting near the power law solution in uniform surroundings. The equations 
are very simple to integrate numerically and when S is small, the solutions, apart 
from the constant region in 40 below 6 = 6, are virtually indistinguishable from 
those of figure 8. For example, if 6 = 0-1 the only significant changes are a reduc- 
tion in the plume velocity of 1 % and an increase in the density gradient of 1 % 
at the most as compared to the previous asymptotic solutions. 

5.2. Equal and opposite pair of sources 
The well-mixed layer near a source of buoyancy could be supplied by a source 
of opposite sign on the opposite surface. This is a situation easily realized in the 
laboratory and could occur in any of the large-scale examples whenever there is 
a source of negative buoyancy (which could also be called a buoyancy sink) on the 
top of the layer. If the two Bources are of equal strength the environment in this 
case would approach a truly steady state, i.e. aAo/at = 0. Inserting this value in the 
equation for conservation of 4, produces a requirement that either the environ- 
ment velocity U or density gradient a4,/& must be zero everywhere. This and 
the equation of continuity can be satisfied only if the environment becomes two 
layers of equal thickness as illustrated on figure 10. A similar picture was obtained 
by Gill (1966) for a laminar flow in a closed container with heated side walls. In  
this case, however, a continuous linear density gradient was developed in the 
interior due to the removal of fluid from the boundary layers over part of their 
length, an effect which does not occur for turbulent plumes. 

The environment velocity is zero along z = i H  for reasons of symmetry, hence 
the fluid entrained into both plumes within a layer comes entirely from the plume 
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which ends in it. Self-entrainment by this plume produces the asymptotic state 
of uniform density, though during the earlier stages both layers will be stably 
stratified. A density difference must exist between the layers in order that the 
flux of buoyancy relation can be satisfied. 

The plume equations also have simple solutions in this case. In  the layer far 
from its source the plume must have the same density as its environment and 
hence be a constant momentum jet. Thus the fluid in the plume is accelerated in 
the first layer but not as it passes through the second. 

FIGURE 10. Sketch of environment produced by equal and opposite sources. 
Dashed line shows indicated limit for closely spaced plumes. 

The density of the two layers can be obtained directly from the equations for 
a simple plume since A = 0 in the far layer. In  terms of the variables defined 
previously the density in the plume at  the mid-plane is 

for line plumes and 

for circular plumes. 
In  each of these equations A is the difference in relative density between the 

plume and near layer. It is also the difference between the two layers because 
A = 0 in the far layer, i.e. 

(33) A05 = 2g(AP/P)* 

If the plumes are close together these equations should not describe the density 
field since there would be a direct flow of fluid from one plume into the other near 
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the source. Such a flow would develop more readily than in the cases considered 
previously because the stabilizing influence of stratification is absent. For this to  
occur the ratio HIR would be expected to be larger than that resulting in in- 
stability for a single plume. By extending this general reasoning to cases of more 
closely spaced plumes a limiting case is obtained where all of the fluid from one 
enters the other without passing through the enrivonment, as shown in the 
dotted curve in figure 10. The plumes would thus be isolated from the environ- 
ment which should remain at  rest at  a uniform density. As shown, however, by 
by Elder (1965) and Gill (1966) this state is not approached in practice; the 
flow in a narrow slot is considerably more complicated than that envisaged here, 
and its discussion lies outside the scope of the present model. 

5.3. Containers of diflerent shapes 

For the large-scale examples mentioned in the opening sections of this paper, 
the assumption of a constant cross-section is a natural one. The container is en- 
visioned as one cell of a very much larger horizontal layer. There are, however, 
applications of geophysical and laboratory interest in which the geometry is 
different. The hot, salty pool at  the bottom of the Red Sea referred to in $ 1  is 
contained in a shallow basin of irregular shape. This is presumed to be heated 
over a limited area at  the bottom where the cross-section is small, but the basin 
widens continuously with height. 

Let us consider a two-dimensional container of depth H with half width 
R = R(z) heated by a line plume a t  z = 0. Any of the other cases can be treated 
by an identical development but for the sake of brevity they will not be con- 
sidered here. The plume equations are not affected by the container shape nor 
is the conservation equation (4) for Ao. The only changes are in the interpretation 
of the equation of continuity in which now R is no longer a constant and in the 
definition of the rate of buoyancy addition 

In  the non-dimensional representation ( 16) is unchanged except that a representa- 
tive lateral width must be specified in place of R. The most natural choice is R,, 
the half width at  the top. Equations (17a) to (17c) are unchanged by these re- 
visions but (17 d )  becomes 

in which r has been written for the dimensionless width r = R/R,. Combining (35) 
with the buoyancy flux equation (17c ) ,  integrating and applying the boundary 
condition that at  the top A = 0 gives 
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The pair of equations (19) is now replaced by the following in j and x = - g2h 
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(37) 1 j(dj/dC) = -x, 

x(dx/dg) =.-j(l- V ) ;  
the only change is that the linear term in [has been replaced by zl function which 
is the relative volume of the container below the level 5. 

Let us specialize still further, and calculate explicitly the properties produced 
in a wedge-shaped region with plane sloping sides by a line plume located along 

its vertex 5 = 0. Here r = 5 so V = z ['rd[ = Ca. The same analysis holds for 
J O  

the family of wedges of different angles. This angle will affect the velocity and 
time scales through the ratio H / R ,  in the (modified) relations (16) but the other 
properties do not depend on it. 

Series solutions can be obtained again in this case satisfying f = 1 and x = j = 0 
at C = 0;  the first few terms are: 

(38) i 
x = -C( l -"  1 5 s  2 +%C4), 
j =  -[(1-" 2 1 7  4 

16C +mC 1, 
fo = 2C( 1 + As2 - &C4) - 2.040. 

The solutions for all the non-dimensional functions calculated from these are 
shown in figure 11. The differences from the solutions of figure 8 in a rectangular 
box are striking. The density distribution is nearly linear with height, and the 
velocities in both the plume and the environment are almost constant (within 
5 yo). The plume fluid will, moreover, be recycled through the environment and 
return to the source in aJinite time, which is in non-dimensional terms 7, = 2.040. 
(Compare this behaviour with the earlier relation (21)). The 'asymptotic' con- 
ditions should therefore also be achieved in actual physical cases. Furthermore, 
the experiments in the container with R constant indicated that the time to 
achieve this state is of the order of T ~ ,  whence the time to establish it for the 
wedge-shaped box should be of the order of T,, or less. 

6. Practical applications 
When one considers the physical cases in which this model could describe the 

heat or mass transfer it is apparent that most are horizontal layers of very large 
lateral extent compared to thickness. Rarely is the location or strength of 
buoyancy source specified; most often the flux per unit area of the lower surface 
PA is the boundary condition. In  terms of the quantities used for the point source 
this is 

and a similar expression can also be obtained for line plumes and thermals. 
The property of primary interest in many of these cases is the minimum density 

or temperature gradient which exists in the environment. For the container with 
uniform cross-section this occurred at  the top and in dimensional variables is 

aA,/az(,,, = ~ * ~ ~ ~ I - % F $ H - $ ( R / H ) * .  (39) 
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But consider further a typical atmospheric situation where temperature or 
temperature gradient is measured at a given height in the presence of a light 
wind. The quantity measured is not A or A, but an average of them. The measuring 
instrument integrates the temperature (or density defect) over the environment 
and the plumes as they pass by. In  exact terms this average density is 

which in terms of the dimensional variables of 0 3.3 is 

f = fo- 8a2(H/R)afiL2, (40) 

where the mean buoyancy defect 

iS = g{(p-pJ/pJ = 2nQP!&H-&(f(C) -7 ) .  

The density gradient determined from averaged measurements at  two closely 
spaced elevations is found by differentiating (40), giving 

The dimensionless term - gh2(ct/dC) ((I - Q/g)  can be found from the solutions (13) 
and (14) discussed above; these expansions must however be carried to five 
terms to allow it to be determined accurately. We find that the term is zero a t  
C: = 0, reaches a small negative maximum, and is zero again about 5 = 0.3. Above 
this value it is positive, reaching 0-4 at 5 = 1. This means that the full correction 
term is no larger than 0.04 assuming that a = 0.1 and H /  R < 1.  The mean gradient 
is therefore always stable and within 4 % of that in the environment. 

For line sources the corresponding results are calculated in the same way. The 
minimum density gradient is 

The average density at  elevation C is given by 

where the mean buoyancy defect 

A = 2-*F!dH-l(f(<) -7). 

From (20) it  is easily seen that fh w 1 - 5 and from considerations of stability 
(H/R) < 1 so the whole correction term must be negative and small (note that 
a value of a = 0.065 for line plumes with Gaussian profiles can be taken from 
Ellison & Turner (1959)). The average density is therefore slightly less than that 
in the environment. The average density gradient has the opposite trend. 
Differentiation of (38) gives 
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The dimensionless function -ghd(fh)/dc is readily shown to be positive for 
0 6 6 < 1 and thus the correction term augments the stable gradient in the 
environment. However, it is not possible to determine the term with accuracy 
because of the limited number of terms in our series solution. It is roughly 
proportional to 6 and the maximum value is less than 0.9. The maximum value 
for the whole term is thus of the order of 0-04. Such a correction is unlikely to 
affect results in most practical situations and the environment gradient can 
therefore be taken to be the average gradient. 

As demonstrations of this model let us consider some of the examples mentioned 
in Q 1. Numerical values are inserted directly in (39) or (42). 

6.1. Cooling of a room by a line source 
Suppose that a room 3 m high and 6 m wide is being cooled at the rate of 20" C/h 
by a single cold line source running along the centre of the ceiling. Neglecting 
losses the physical quantities are (in c.g.s. units), 8A0/8t = 2 x H = 3 x lo2, 
R/H = 1 so aA,/az M which corresponds to a temperature gradient of 
0.4 "C/m near the floor. About 30 em from the ceiling the gradient would be ten 
times as great. 

6.2. Heating of the atmosphere below cloud-base 
If H = 1 km and this layer of air is heated by equal point sources spaced to give 
R M H then with a heating rate of 1 "C/h, 

aA,/at = 10-3, H = 105, aAo/azlmax. = 6.5 x 10-5, 

which implies a stable potential temperature gradient of 2"C/km. Warner & 
Telford (1967) suggested a mean value of about & of this in the lower atmosphere 
under convective conditions-but of course we have not taken into account the 
effect of closer plume spacing which was indicated by the measurements, or of 
a distribution of plume strengths which would also have the effect of decreasing 
the gradients. 

6.3. Cooling of the 'upper mixed layer' in the ocean 
Convection in the surface layer of the ocean above the seasonal thermocline has 
usually been considered to take place in the form of a series of overturning cells. 
If the process is interpreted instead as a series of rectangular sections being filled 
by line plumes spaced 50m apart our model gives the following results for a 
cooling rate of 0.05 "C/h: aA,/at = 2 x 10-6, H = 2 x lo3, RIH = 1.25 SO 

i?Ao/8zlm,,. = 1 x which corresponds to a minimum temperature gradient of 
7 x "C/cm and a difference of about 0.3 "C between the bottom of the layer 
and a depth of 2 m. 

6.4. Heating of a wedge-shaped basin 
As an idealized version of the basin at  the bottom of the Red Sea, consider a 
wedge-shaped contained with a depth of 100 m and a top width of 4 km whence 
R,/H = 20. If this is heated by a line source at  the bed (16) and (38) give 
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Suppose the whole basin is heating at  a rate of 0.3 "C/year so that 
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aA,/at = 4 x 10-9 

(using a coefficient of expansion appropriate to 50°C). Then aA,/az = 4 x 10-7, 
corresponding to a potential temperature gradient of 10-6 OC/cm, i.e. 0.1 "C/km. 
Stable gradients about ten times as large as this have in fact been observed, with 
the assumed overall heating rate. This suggests an explanation in terms of more 
concentrated sources, not a line source down the whole of the basin; the assump- 
tion of either a short line source, or a point source, will have the effect of increasing 
the importance of the (RJH) term. A more detailed calculation, using the 
observed bathymetry of the basin, might in fact allow one to make some pre- 
dictions about the extent of the sources which could produce the observed 
gradient and rate of heating. 

7. Final remarks 
In  conclusion, we should review the main features of the model developed 

herein, but with a warning about effects which have been so far ignored in its 
development, and which may limit its range of direct application. Concurrently 
the possible extensions will also be mentioned. The excellent agreement between 
the theoretical model and the laboratory experiment leave no doubt that the 
process of 'filling a box with a plume' (or other convective elements) can lead to 
the production of a stable gradient, whose form is calculable when the distribution 
of sources is known. This gradient is stable, moreover, when horizontal averages 
are taken including the plumes as well as the 'environment ', and the model gives 
a clear physical explanation for the phenomenon of 'transport against the 
gradient '. It can be modified satisfactorily to remove the unreal infinities 
associated with point sources, and to take account of a well-mixed layer near the 
source. 

The model has left out entirely the effect of turbulence in the environment. 
Some of its basic features (such as the reversed gradient) are still present however 
in laboratory experiments on turbulent convection, and even in the real atmos- 
phere. It is therefore suspected that turbulence produces a quantitative rather 
than a qualitative change in the results, although the problem of describing the 
mixing in both directions between a turbulent element and its turbulent sur- 
roundings has not yet been solved properly. Another assumption which may be 
unrealistic for the real atmosphere is the use of fixed rigid walls bounding the 
part of the environment in which convection is occurring. Often the boundary at  
its top is rising as the increasing temperature of the surface layer overtakes that 
in the inversion above; this too could be, but has not yet been, incorporated into 
a 'filling box' model. The transport of heat by conduction from this top surface 
could also be included. 

It is tempting to try to interpret many meteorological and oceanographic 
phenomena, covering a very wide range of scales, in terms of a model of this kind. 
Thus the general subsidence of the atmosphere and the upwelling in the ocean 
can be thought of respectively as the result of more limited regions of upflow 
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(in cumulonimbus clouds) and downflow (in Arctic regions). The atmospheric 
case is complicated by losses due to radiation, but for the ocean it is known that 
all the heat is put in and removed near the surface, and that the ‘bottom water ’ is 
formed in a few very small areas. A time-dependent filling box model, which 
preserves the mean temperature profile while mixing is accomplished by plumes 
which penetrate to varying depths seems worth exploring theoretically. Its 
feasibility was demonstrated in a laboratory experiment with an oscillating 
source. The simpler case of two steady sources of different strengths has also been 
studied in a laboratory experiment. It was observed that the weaker plume 
terminated at  an elevation within the environment and that the density profile 
was similar to that produced by a single plume. No analytic model has yet been 
devised which produces solutions for comparison to the measurements in either 
of these cases. 

Finally, we mention the most important limitation of all, the need to specify 
the type, strength and separation of the sources for the application of our results. 
In  most situations of interest convection begins from a more uniform distribution 
of heating than the isolated sources considered, and the buoyant elements often 
arise spontaneously rather than associated with special features of the lower 
surface. In  this case (and also in the case of more regularly spaced extended 
sources) lateral inflows must develop along the boundary. These are analogous 
to the well-mixed layers of 5 5.1 in that they provide a mechanism for the elimina- 
tion of the singularity at  5 = 0 in the theoretical solution. The detailed under- 
standing of the process of initial formation of the convection elements remains 
a major problem. 

The first author held a Senior Research Fellowship from the National Research 
Council of Canada, during the period of this work, and the second was supported 
by a grant from the British Admiralty. 
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FIGURE 1. (a) Establishment of the first front by a circular plume. (6) Later development 
of stratified environment. Dyed layers were produced by injections at constant time 
intervals in the past. 
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